Mechanical facilitation by maritime pine against severe browsing on holm oak plantation in San Rossore forest

Alberto Maltoni¹, Barbara Mariotti¹, Francesca Logli², Sofia Martini¹, Andrea Tani¹, Roberto Tognetti³,⁴

¹ GESAAF, Università di Firenze, Italy
² Ente Parco Regionale Miglierino, San Rossore, Massaciucceoli
³ DiBT Università del Molise, Italy
⁴ EFI – MOUNTFOR
Introduction

Protected area: Regional Park Migliarino, San Rosso, Massaciuccoli between 43°51′36″–43°35′25″ N and 10°14′26″–10°21′11″ E
Introduction

Fragmented geographic range of *Pinus pinaster*

Eastern side: disturbances due to higher stress factors in the species range limit (i.e. drought)

LOW RESISTANCE

Invasion by an alien insect *Matsucoccus feytaudi*

✓ Plant weakening
✓ Favor secondary diseases
✓ Tree and stands mortality
Required by law, forest logging started in winter 2010-2011 on *P. pinaster* stands 65 years old. Firstly, clear-cut on small surfaces, then on larger remaining areas.

Quercus ilex plantation 4x4 m in shelter (h 1.20 m)
High ungulates impact

Severe damages to forest natural regeneration

In 2007 ungulates density was 7 times higher than density compatible with forest regeneration dynamics (Vernina, 2007)
Aim of the study

MONITORING FOREST DYNAMICS

- *Quercus ilex* plantation - artificial regeneration
 432 oaks in 6 harvest units, 2 plots per unit
- *Pinus pinaster* natural regeneration
 216 sub-areas of 4 m² in 6 harvest units, 2 plots per unit

INTERACTION–COMPETITION or FACILITATION

Providing information and guidance for effective forest management leading to the enhancement of survival and establishment of holm oak seedlings for restoration
Results

Q. ilex survival: 62.9%

χ² test → two different groups of sampling areas: 41-60% vs 75-81%

- Establishment categories according to browsing effect:
 - **Dead**
 - Repeatedly browsed and re-sprouted from stump
 - $H=37.5\pm34.2$ cm
 - D 19.4-58.3%
 - **Repeatedly browsed at shelter height**
 - $H=131.0\pm6.5$ cm
 - BSH 8.3-50.0%
 - **Repeatedly browsed with ≥1 well-grown shoot**
 - $H=180.4\pm33.8$ cm
 - Alive and not browsed
 - **Repeatedly browsed**
 - $H=37.5\pm34.2$ cm
 - RS 5.6-44.4%

- High variability in occurrence of categories among sampling areas

- to look for a key variable to describe the occurrence of categories (among areas, 2 different groups distinguished according to GS%, < and >20%)
Results

- **Surrounding vegetation**

 - **Canopy cover** around oaks was positively related ($p<0.01$) to the presence of natural regeneration ($r=0.69$), but more to maritime pine regeneration ($r=0.84$)

 - **Holm oak survival** was positively related ($p<0.01$) to the height of surrounding vegetation canopy cover ($r=0.73$) and presence of pine ($r=0.68$) but NOT of other species

 - $P. \text{pinaster/ha} = 20583$ in areas where survival is higher than 75% (twice than in other areas, 10476 pp/ha)

 - **GS frequency** was positively related ($p<0.01$) to height of canopy cover ($r=0.89$) and of maritime pine ($r=0.79$)

Thus, focus on *Pinus pinaster* natural regeneration aspects which could affect FACILITATION
According to ANOVA, many pine characters affected holm oak re-sprouting and growth \((p<0.01) \), highlighting clear differences among D, RS+BSH, GS

- **Pine presence**
 \((\text{GS 9.2 plant/m}^2 \text{ vs 6.3 vs 3.7}) \)

- **Pine Height**
 \((\text{GS 232 cm vs 140 vs 96}) \)

- **Pine crown development**
 \((\text{GS MeanR 50 cm vs 40.8 vs 34.9; cover 73.9% vs 49.8 vs 41.9}) \)

- **Other indexes combining pine growth&crown and distance**

Other species did not facilitate holm oak resprouting
Conclusions

Current situation

☑ Natural regeneration of maritime pine was more effective than shelter to holm oak growth
☑ Maritime pine facilitation: plants can be a mechanical obstacle
☑ 82.9% of GS occurred where pine branches dominated the tree-shelter
☑ This is a recent occurrence (since about 2 years ago), thus, the maritime pine needs on average 6-7 years to be effective to protect shoots at 1.20 m height

Natural regeneration of *Pinus pinaster* facilitates *Quercus ilex* survival and growth under severe deer browsing pressure

Alberto Maltonia, Barbara Mariottia,*, Andrea Tania, Sofia Martinia, Douglass F. Jacobsb, Roberto Tognettic
Conclusions

Future perspective

✓ Growing pines will facilitate more holm oak; thus RS and RSH → GS year after year
✓ But in a few years young maritime pines will be attacked by the *M. feytaudi*

✓ However, young maritime pines with mature cones resulted 1169 p/ha (range 0-2639), thus, it is likely that a further future generation of pines could facilitate new plantations

Maritime pine resilience → effective facilitation
Maritime pine resilience → effective facilitation

......lesson for the future
✓ Since holm oak is shade tolerant species, plantation should be:
 ✓ established 2-3 years after harvesting
 ✓ without shelter
 ✓ localized, according to pine natural regeneration density and growth
Thank you for your attention

alberto.maltoni@unifi.it